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xv

PREFACE

It has been over thirty years since we published the first edition of this book. Over that period, 
our original contention that numerical methods and computers would figure more prominently 
in the engineering curriculum—particularly in the early parts—has been dramatically borne 
out. Many universities now offer freshman, sophomore, and junior courses in both introductory 
computing and numerical methods. In addition, many of our colleagues are integrating 
computer-oriented problems into other courses at all levels of the curriculum. Thus, this new 
edition is still founded on the basic premise that student engineers should be provided with a 
strong and early introduction to numerical methods. Consequently, we have endeavored to 
maintain many of the features that made previous editions accessible to both lower- and upper-
level undergraduates. These include:

∙	 Problem Orientation.  Engineering students learn best when they are motivated by 
problems. This is particularly true for mathematics and computing. Consequently, we 
have approached numerical methods from a problem-solving perspective.

∙	 Student-Oriented Pedagogy.  We have developed several features to make this book 
as student-friendly as possible. These include the overall organization, the use of 
introductions and epilogues to consolidate major topics and the extensive use of 
worked examples and case studies from all areas of engineering. We have also endeav-
ored to keep our explanations straightforward and oriented practically.

∙	 Computational Tools.  We empower our students by helping them utilize the standard 
“point-and-shoot” numerical problem-solving capabilities of packages like Excel, 
MATLAB, and Mathcad software. However, students are also shown how to develop 
simple, well-structured programs to extend the base capabilities of those environ-
ments. This knowledge carries over to standard programming languages such as Visual 
Basic, C/C++, Python, and modern versions of Fortran. We believe that the deem-
phasis of computer programming represents a “dumbing down” of the engineering 
curriculum. The bottom line is that if engineers are not content to be tool limited, 
they will have to write code. Only now they may be called “macros” or “scripts.” This 
book is designed to empower them to do that. 

Beyond these original principles, the eighth edition includes new material on cubic splines, 
Monte Carlo integration, and supplementary material on hyperbolic partial differential 
equations. It also has new and expanded problem sets. Many of the problems have been 
modified so that they yield different numerical solutions from previous editions. In addition, 
a variety of new problems have been included.
	 As always, our primary intent in writing this book is to provide students with a sound 
introduction to numerical methods. We believe that motivated students who enjoy numer-
ical methods, computers, and mathematics will, in the end, make better engineers. If our 
book fosters an enthusiasm for these subjects, we will consider our efforts a success.
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PA R T  O N E

2

MODELING, COMPUTERS,  
AND ERROR ANALYSIS

	 PT1.1	 MOTIVATION
Numerical methods are techniques by which mathematical problems are formulated so 
that they can be solved with arithmetic operations. Although there are many kinds of 
numerical methods, they have one common characteristic: they invariably involve large 
numbers of tedious arithmetic calculations. It is little wonder that with the development 
of fast, efficient digital computers, the role of numerical methods in engineering problem 
solving has increased dramatically in recent years.

PT1.1.1  Noncomputer Methods
Beyond providing increased computational firepower, the widespread availability of com-
puters (especially personal computers) and their partnership with numerical methods has 
had a significant influence on the actual engineering problem-solving process. In the 
precomputer era there were generally three different ways in which engineers approached 
problem solving:

1.	 Solutions were derived for some problems using analytical, or exact, methods. These 
solutions were often useful and provided excellent insight into the behavior of some 
systems. However, analytical solutions can be derived for only a limited class of 
problems. These include those that can be approximated with linear models and 
those that have simple geometry and low dimensionality. Consequently, analytical 
solutions are of limited practical value because most real problems are nonlinear and 
involve complex shapes and processes.

2.	 Graphical solutions were used to characterize the behavior of systems. These 
graphical solutions usually took the form of plots or nomographs. Although graphical 
techniques can often be used to solve complex problems, the results are not very 
precise. Furthermore, graphical solutions (without the aid of computers) are extremely 
tedious and awkward to implement. Finally, graphical techniques are often limited 
to problems that can be described using three or fewer dimensions.

3.	 Calculators and slide rules were used to implement numerical methods manually. 
Although in theory such approaches should be perfectly adequate for solving complex 
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	 PT1.1  MOTIVATION� 3

problems, in actuality several difficulties are encountered. Manual calculations are 
slow and tedious. Furthermore, consistent results are elusive because of simple 
blunders that arise when numerous manual tasks are performed.

	 During the precomputer era, significant amounts of energy were expended on the 
solution technique itself, rather than on problem definition and interpretation (Fig. PT1.1a). 
This unfortunate situation existed because so much time and drudgery were required to 
obtain numerical answers using precomputer techniques.
	 Today, computers and numerical methods provide an alternative for such compli-
cated calculations. Using computer power to obtain solutions directly, you can approach 
these calculations without recourse to simplifying assumptions or time-intensive tech-
niques. Although analytical solutions are still extremely valuable both for problem 
solving and for providing insight, numerical methods represent alternatives that greatly 
enlarge your capabilities to confront and solve problems. As a result, more time is 
available for the use of your creative skills. Thus, more emphasis can be placed on 
problem formulation and solution interpretation and the incorporation of total system, 
or “holistic,” awareness (Fig. PT1.1b).

FIGURE PT1.1
The three phases of engineer-
ing problem solving in (a) the  
precomputer and (b) the  
computer era. The sizes of the 
boxes indicate the level of  
emphasis directed toward each 
phase. Computers facilitate the 
implementation of solution 
techniques and thus allow 
more emphasis to be placed 
on the creative aspects of 
problem formulation and inter-
pretation of results.

INTERPRETATION

Ease of calculation
allows holistic thoughts
and intuition to develop;

system sensitivity and behavior
can be studied

FORMULATION

In-depth exposition
of relationship of

problem to fundamental
laws

SOLUTION

Easy-to-use
computer
method

(b)

INTERPRETATION

In-depth analysis
limited by time-

consuming solution

FORMULATION

Fundamental
laws explained

briefly

SOLUTION

Elaborate and often
complicated method to
make problem tractable

(a)
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4	 MODELING, COMPUTERS, AND ERROR ANALYSIS

PT1.1.2  Numerical Methods and Engineering Practice
Since the late 1940s the widespread availability of digital computers has led to a veri-
table explosion in the use and development of numerical methods. At first, this growth 
was somewhat limited by the cost of access to large mainframe computers, and, conse-
quently, many engineers continued to use simple analytical approaches in a significant 
portion of their work. Needless to say, the recent evolution of inexpensive personal 
computers has given us ready access to powerful computational capabilities. There are 
several additional reasons why you should study numerical methods:

1.	 Numerical methods are extremely powerful problem-solving tools. They are capable 
of handling large systems of equations, nonlinearities, and complicated geometries 
that are not uncommon in engineering practice and that are often impossible to solve 
analytically. As such, they greatly enhance your problem-solving skills.

2.	 During your careers, you may often have occasion to use commercially available 
prepackaged, or “canned,” computer programs that involve numerical methods. The 
intelligent use of these programs is often predicated on knowledge of the basic 
theory underlying the methods.

3.	 Many problems cannot be approached using canned programs. If you are conversant 
with numerical methods and are adept at computer programming, you can design 
your own programs to solve problems without having to buy or commission expensive 
software.

4.	 Numerical methods are an efficient vehicle for learning to use computers. It is well 
known that an effective way to learn programming is to actually write computer 
programs. Because numerical methods are for the most part designed for 
implementation on computers, they are ideal for this purpose. Further, they are 
especially well-suited to illustrate the power and the limitations of computers. When 
you successfully implement numerical methods on a computer and then apply them 
to solve otherwise intractable problems, you will be provided with a dramatic 
demonstration of how computers can serve your professional development. At the 
same time, you will also learn to acknowledge and control the errors of approximation 
that are part and parcel of large-scale numerical calculations.

5.	 Numerical methods provide a vehicle for you to reinforce your understanding of 
mathematics. Because one function of numerical methods is to reduce higher 
mathematics to basic arithmetic operations, they get at the “nuts and bolts” of some 
otherwise obscure topics. Enhanced understanding and insight can result from this 
alternative perspective.

	 PT1.2	 MATHEMATICAL BACKGROUND
Every part in this book requires some mathematical background. Consequently, the intro-
ductory material for each part includes a section, such as the one you are reading, on 
mathematical background. Because Part One itself is devoted to background material on 
mathematics and computers, this section does not involve a review of a specific math-
ematical topic. Rather, we take this opportunity to introduce you to the types of math-
ematical subject areas covered in this book. As summarized in Fig. PT1.2, these are
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f(x)

x

Root

x2

x1

Solution

Minimum

f(x)

x

Interpolation

f(x)

x

f(x)

x

Regression

f(x)

I

(a) Part 2: Roots of equations
Solve f(x) = 0 for x.

(c) Part 4: Optimization

(b) Part 3: Linear algebraic equations
Given the a’s and the c’s, solve
a11x1 + a12x2 = c1

a21x1 + a22x2 = c2

for the x’s.

Determine x that gives optimum f(x).

(e) Part 6: Integration
I = ∫a

b f (x) dx

Find the area under the curve.

(d) Part 5: Curve fitting

x

FIGURE PT1.2
Summary of the numerical 
methods covered in this book.
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y

x

(g) Part 8: Partial di�erential equations
Given

solve for u as a function of
x and y.

= f (x, y)∂2u
∂x2

∂2u
∂y2+

t

Slope =
f(ti, yi)

y

Δt

ti ti + 1

( f ) Part 7: Ordinary di�erential equations
Given

solve for y as a function of t.
yi + 1 = yi + f (ti , yi ) Δt

≅ = f (t, y)
dy
dt

Δy
Δt

FIGURE PT1.2 
(concluded)

1.	 Roots of Equations (Fig. PT1.2a). These problems are concerned with the value of 
a variable or a parameter that satisfies a single nonlinear equation. These problems 
are especially valuable in engineering design contexts where it is often impossible 
to explicitly solve design equations for parameters.

2.	 Systems of Linear Algebraic Equations (Fig. PT1.2b). These problems are similar in 
spirit to roots of equations in the sense that they are concerned with values that 
satisfy equations. However, in contrast to satisfying a single equation, a set of values 
is sought that simultaneously satisfies a set of linear algebraic equations. Such 
equations arise in a variety of problem contexts and in all disciplines of engineering. 
In particular, they originate in the mathematical modeling of large systems of 
interconnected elements such as structures, electric circuits, and fluid networks. 
However, they are also encountered in other areas of numerical methods such as 
curve fitting and differential equations.

3.	 Optimization (Fig. PT1.2c). These problems involve determining a value or values 
of an independent variable that correspond to a “best,” or optimal, value of a function. 
Thus, as in Fig. PT1.2c, optimization involves identifying maxima and minima. Such 
problems occur routinely in engineering design contexts. They also arise in a number 
of other numerical methods. We address both single- and multivariable unconstrained 
optimization. We also describe constrained optimization with particular emphasis on 
linear programming.

4.	 Curve Fitting (Fig. PT1.2d). You will often have occasion to fit curves to data points. 
The techniques developed for this purpose can be divided into two general categories: 
regression and interpolation. Regression is employed where there is a significant 
degree of error associated with the data. Experimental results are often of this kind. 
For these situations, the strategy is to derive a single curve that represents the general 
trend of the data without necessarily matching any individual points. In contrast, 
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interpolation is used where the objective is to determine intermediate values between 
relatively error-free data points. Such is usually the case for tabulated information. 
For these situations, the strategy is to fit a curve directly through the data points 
and use the curve to predict the intermediate values.

5.	 Integration (Fig. PT1.2e). As depicted, a physical interpretation of numerical 
integration is the determination of the area under a curve. Integration has many 
applications in engineering practice, ranging from the determination of the centroids 
of oddly shaped objects to the calculation of total quantities based on sets of discrete 
measurements. In addition, numerical integration formulas play an important role in 
the solution of differential equations.

6.	 Ordinary Differential Equations (Fig. PT1.2f ). Ordinary differential equations are 
of great significance in engineering practice. This is because many physical laws are 
couched in terms of the rate of change of a quantity rather than the magnitude of 
the quantity itself. Examples range from population-forecasting models (rate of 
change of population) to the acceleration of a falling body (rate of change of velocity). 
Two types of problems are addressed: initial-value and boundary-value problems. In 
addition, the computation of eigenvalues is covered.

7.	 Partial Differential Equations (Fig. PT1.2g). Partial differential equations are used 
to characterize engineering systems where the behavior of a physical quantity is 
couched in terms of its rate of change with respect to two or more independent 
variables. Examples include the steady-state distribution of temperature on a heated 
plate (two spatial dimensions) or the time-variable temperature of a heated rod (time 
and one spatial dimension). Two fundamentally different approaches are employed 
to solve partial differential equations numerically. In the present text, we will 
emphasize finite-difference methods that approximate the solution in a pointwise 
fashion (Fig. PT1.2g). However, we will also present an introduction to finite-
element methods, which use a piecewise approach.

	 PT1.3	 ORIENTATION
Some orientation might be helpful before proceeding with our introduction to numer-
ical methods. The following is intended as an overview of the material in Part One. 
In addition, some objectives have been included to focus your efforts when studying 
the material.

PT1.3.1  Scope and Preview
Figure PT1.3 is a schematic representation of the material in Part One. We have designed 
this diagram to provide you with a global overview of this part of the book. We believe 
that a sense of the “big picture” is critical to developing insight into numerical methods. 
When reading a text, it is often possible to become lost in technical details. Whenever 
you feel that you are losing the big picture, refer back to Fig. PT1.3 to reorient yourself. 
Every part of this book includes a similar figure.
	 Figure PT1.3 also serves as a brief preview of the material covered in Part One. 
Chapter 1 is designed to orient you to numerical methods and to provide motivation by 
demonstrating how these techniques can be used in the engineering modeling process. 
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CHAPTER 1
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Problem
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CHAPTER 2
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and Software

CHAPTER 3
Approximations
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Errors

CHAPTER 4
Truncation

Errors and the
Taylor
Series
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2.7
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2.4
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PT 1.6
Advanced
methods

PT 1.5
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FIGURE PT1.3
Schematic of the organization of the material in Part One: Modeling, Computers, and Error Analysis.
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Chapter 2 is an introduction and review of computer-related aspects of numerical meth-
ods and suggests the level of computer skills you should acquire to efficiently apply 
succeeding information. Chapters 3 and 4 deal with the important topic of error analysis, 
which must be understood for the effective use of numerical methods. In addition, an 
epilogue is included that introduces the trade-offs that have such great significance for 
the effective implementation of numerical methods.

PT1.3.2  Goals and Objectives
Study Objectives.  Upon completing Part One, you should be adequately prepared to 
embark on your studies of numerical methods. In general, you should have gained a 
fundamental understanding of the importance of computers and the role of approximations 
and errors in the implementation and development of numerical methods. In addition to 
these general goals, you should have mastered each of the specific study objectives listed 
in Table PT1.1.

Computer Objectives.  Upon completing Part One, you should have mastered 
sufficient computer skills to develop your own software for the numerical methods in 
this text. You should be able to develop well-structured and reliable computer programs 

TABLE PT1.1  Specific study objectives for Part One.

	 1.	Recognize the difference between analytical and numerical solutions.
	 2.	Understand how conservation laws are employed to develop mathematical models of physical 

systems.
	 3.	Define top-down and modular design.
	 4.	Delineate the rules that underlie structured programming.
	 5.	Be capable of composing structured and modular programs in a high-level computer language.
	 6.	Know how to translate structured flowcharts and pseudocode into code in a high-level language.
	 7.	Start to familiarize yourself with any software packages that you will be using in conjunction with 

this text.
	 8.	Recognize the distinction between truncation and round-off errors.
	 9.	Understand the concepts of significant figures, accuracy, and precision.
	 10.	Recognize the difference between true relative error εt, approximate relative error εa, and 

acceptable error εs, and understand how εa and εs are used to terminate an iterative 
computation.

	 11.	Understand how numbers are represented in digital computers and how this representation 
induces round-off error. In particular, know the difference between single and extended 
precision.

	 12.	Recognize how computer arithmetic can introduce and amplify round-off errors in calculations. In 
particular, appreciate the problem of subtractive cancellation.

	 13.	Understand how the Taylor series and its remainder are employed to represent continuous 
functions.

	 14.	Know the relationship between finite divided differences and derivatives.
	 15.	Be able to analyze how errors are propagated through functional relationships.
	 16.	Be familiar with the concepts of stability and condition.
	 17.	Familiarize yourself with the trade-offs outlined in the Epilogue of Part One.
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10	 MODELING, COMPUTERS, AND ERROR ANALYSIS

on the basis of pseudocode, flowcharts, or other forms of algorithms. You should have 
developed the capability to document your programs so that they may be effectively 
employed by users. Finally, in addition to your own programs, you may be using 
software packages along with this book. Packages like Excel, Mathcad, or The 
MathWorks, Inc. MATLAB® program are examples of such software. You should 
become familiar with these packages, so that you will be comfortable using them to 
solve numerical problems later in the text.
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C H A P T E R

1
Mathematical Modeling and 
Engineering Problem Solving

Knowledge and understanding are prerequisites for the effective implementation of any 
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car 
if you do not understand how it works.
	 This is particularly true when using computers to solve engineering problems. 
Although they have great potential utility, computers are practically useless without a 
fundamental understanding of how engineering systems work.
	 This understanding is initially gained by empirical means—that is, by observation 
and experiment. However, while such empirically derived information is essential, it is 
only half the story. Over years and years of observation and experiment, engineers and 
scientists have noticed that certain aspects of their empirical studies occur repeatedly. 
Such general behavior can then be expressed as fundamental laws that essentially embody 
the cumulative wisdom of past experience. Thus, most engineering problem solving 
employs the two-pronged approach of empiricism and theoretical analysis (Fig. 1.1).
	 It must be stressed that the two prongs are closely coupled. As new measurements are 
taken, the generalizations may be modified or new ones developed. Similarly, the general-
izations can have a strong influence on the experiments and observations. In particular, 
generalizations can serve as organizing principles that can be employed to synthesize ob-
servations and experimental results into a coherent and comprehensive framework from 
which conclusions can be drawn. From an engineering problem-solving perspective, such 
a framework is most useful when it is expressed in the form of a mathematical model.
	 The primary objective of this chapter is to introduce you to mathematical modeling 
and its role in engineering problem solving. We will also illustrate how numerical meth-
ods figure in the process.

	 1.1	 A SIMPLE MATHEMATICAL MODEL
A mathematical model can be broadly defined as a formulation or equation that expresses 
the essential features of a physical system or process in mathematical terms. In a very 
general sense, it can be represented as a functional relationship of the form

Dependent
variable = f  (

independent
variables , parameters, forcing

functions)	 (1.1)
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12	 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

where the dependent variable is a characteristic that usually reflects the behavior or state 
of the system; the independent variables are usually dimensions, such as time and space, 
along which the system’s behavior is being determined; the parameters are reflective of 
the system’s properties or composition; and the forcing functions are external influences 
acting upon the system.
	 The actual mathematical expression of Eq. (1.1) can range from a simple algebraic 
relationship to large complicated sets of differential equations. For example, on the 
basis of his observations, Newton formulated his second law of motion, which states 
that the time rate of change of momentum of a body is equal to the resultant force 
acting on it. The mathematical expression, or model, of the second law is the well-
known equation

F = ma	 (1.2)

where F = net force acting on the body (N, or kg m/s2), m = mass of the object (kg), 
and a = its acceleration (m/s2).

Implementation

Numeric or
graphic results

Mathematical
model

Problem
definition

THEORY DATA

Problem-solving tools:
computers, statistics,
numerical methods,

graphics, etc.

Societal interfaces:
scheduling, optimization,

communication,
public interaction,

etc.

FIGURE 1.1
The engineering problem- 
solving process.
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